You can’t understand what polls mean until you understand how they work. The most common misunderstanding people have is about what margin of error means and what type of error it covers. The margin of error doesn’t tell the whole story. Polling error has many different components. Some types of errors are easy to predict, but others can be impossible to guess. I’m going to talk about the three most important sources of error in polling broadly but focusing on election polling. I want to do this so that you better understand why margin of error is not the only type of error and that polls work well all things considered. This post is not about how polls are wrong, it is about how they are right in the midst of numerous challenges.
Three Types of Error:
- Sampling Variation: effects of using only a subset of a population
- Incorrect Responses and Changes in Opinion: respondent to the survey intentionally or unintentionally does give the correct response or later changes their mind
- Miscoverage: the population that was sampled was not the population of interest
Sampling Variation
One concept people struggle with in statistics is variation. Statistics involves math but there is no longer one solution. If I solve an algebra equation again over and over again my answer shouldn’t change. Statistics is based on samples that are subsets of a population. If a collect a sample over and over again the numbers will be slightly different almost every time. In most cases, my estimate for the sample will not exactly match the true population. You can see this by flipping a coin a bunch of times. A US coin is going to be split relatively evenly, but when you start flipping the coin yourself you might not always get exactly 50% heads and 50% tails. This is because coin flips are random. Polls work in a similar way.
Sampling variation is a huge driver of polling error. It is completely mathematically expected that a sample of a few hundred to a few thousand people isn’t going to tell us the exact true proportion of support for a candidate or policy. If we make some assumptions and adjustments we can calculate a quantity called the margin of error that gives us an estimate of how much randomness to expect. Margin of error only includes error from sampling variation and not the other two types of error I will talk about later.
Typically you are going to make the following assumptions:
- People who were sampled but didn’t participate in the survey are not any different than those that did after you control for demographic variables. This is something that is obviously impossible to verify directly.
- You have a decent estimate of the target population. The target population is who you want to poll, and the main target populations are likely voters (people thought likely to vote), registered voters (people actively registered to vote), and all adults (including people that can’t vote). The census gives us a pretty good idea about the population characteristics of all adults, and you can use this information combined with other information to get estimates for registered voters. Likely voters are hard to identify because the respondent isn’t always the best predictor of if they will vote, and turnout varies from year to year.
Assumptions are very common in statistics and sometimes it’s difficult to assess how reasonable an assumption is. You may have some doubts about both assumptions being valid. To a certain extent, we know that these assumptions aren’t completely true, but there is a concept in statistics called robustness. Robustness says that under certain conditions (usually large sample sizes) small violations in assumptions are ok, but it has to be acknowledged that violations in assumptions can affect results.
Depending on details about the poll the margin of error is usually about 2-5 points. I’ll omit the calculation because it gets complicated in practice because most surveys have complicated procedures (but statistically valid) to use the estimate of the population characteristics to adjust the poll to match it (this is called raking or weighting involves a lot of math). Now what does this margin of error mean? Typically you add or subtract the margin of error from each estimated quantity and this gives you a range of probable values. Theoretically, if no other types of errors exists (they do) and the assumptions hold and you had dozens upon dozens of polls, 95% of those intervals should can the true population proportions. But in election polls, it’s common to have undecided voters and while it is important to track undecided voters, they complicate things since undecided isn’t really a ballot option. A workaround in election polling is to look at the difference between the margin of candidates, double the margin of error and see if that interval contains 0, and if it does the election is too close to call based on this poll.
Incorrect Responses and Changes in Opinion
People makes mistakes in all aspects in life, and polls are no exception. Additionally you can lie to a pollster. Unfortunately in most polls you don’t know if the answer from the respondent was accurate. If we didn’t have to ask the respondent to answer the question because we knew it already there wouldn’t be much reason for polling. There is no mathematical formula that tells us how to exactly adjust for lying or mistakes in surveys. Respondent mistakes and lying is not in the margin of error because it is too hard to exactly estimate. You can test the respondents ability to follow directions by telling them what response to pick on test questions (i.e. Select True for the next question) and if they get the test questions wrong you could throw them out. Individuals who later changed there mind fall into this category. Early in an election, there are going to be undecided individuals and individuals who later change their minds. Undecided voters are likely a large driver of polling error because it is unknown whether they will vote and if so for whom. Sometimes the people who decide later in the campaign vote differently than other deciders and this is believed to be a large factor in 2016 polling error. If a poll has a higher percentage of undecided voters thant the difference between the candidates, this indicates that the race can be competitive regardless of the margin of error.
Miscoverage
There are a few ways to get a sample. Ideally, your sample is random but there are only a few ways to recruit survey respondents: call random phone numbers, select random addresses, or “randomly” recruit people on the internet, or for exit polls stand outside of polling locations and ask every nth voter. All of these sources of data are not exactly representative of the American voter. Selecting random addresses can be random and representative of the American adults but people move and mail samples are typically used to recruit people for future phone or internet polls because mail is slow. Not everyone has a phone or internet access. Statistical theory often assumes you have a perfect source to draw a sample from. We don’t have a perfect source, so we have a little bit more error. And standing outside of every single polling place is obviously impractical and it’s hard to select a subset that will be completely representative. When we use a sample that doesn’t exactly fit we don’t always get perfect results.
Conclusion
I haven’t listed every source of polling error but I wanted to give a few examples of types of error that help explain why margin of error doesn’t always match up with actual survey error.
You may be wondering if margin of error doesn’t provide the whole predict what do we know about polling error? Are polls reliable? What is the difference between margin of error and predicted error on average?
Thankfully we have a great large database from Huffington Post’s Pollster that can help us answer these questions. We have over 5,000 state-level presidential polls from 2008-2016 and over 3,000 have a listed margin of error. In most cases we care about the difference between the democratic and republican candidates as the main metric because it tells us who is leading. We know that the margin of error is double the standard margin of error because margin of error is for one candidate. For about 4 in 5 polls the true election margin was in the interval in polls the last 60 days before the election. But in 1 in 20 polls the observed error was 5 points higher than the margin of error. A key thing about this data set is the polls are not evenly distributed across years or states.
Statistical models like the ones I commonly build can help to predict a polling error given information about where, when, and how the poll was collected. While these models are helpful, they also have uncertainty. Usually polls can be used as signals of what races are competitive, but can’t always predict winners. It is helpful to take a conservative approach when looking at a poll and acknowledging the potential sources of error.
The key thing to remember is that polling is one of our best tools for evaluating public opinion in general. Sometimes people use other types of models to predict elections, but for non-election public opinion questions about policy or presidential approval, polling data is required for statistical analysis.